🧩 Percentages
Learning Objectives
Let’s begin with this problem:
Given a decimal number I want to convert it into a percentage format.
For example, given the decimal number 0.5
we return the string "50%"
. Given the decimal number 0.231
we return the string "23.1%"
.
Restating the problem
Our function must convert any decimal to a percentage. We have used functions already. Here are some functions we’ve used:
|
|
All these expressions are function calls: we’re passing input ("hello world"
or 3.141
) to the functions (console.log
or Math.round
) to use their functionality. Math.round
and console.log
are functions that the JavaScript language designers have written and stored inside the language, because everyone needs them all the time.
No such pre-built function converts any number to a percentage, so we must write our own. We’re going to create a function called convertToPercentage
with the following requirements:
Given a number input
When we call convertToPercentage
with the number input
Then we get back a string representing the percentage for that
Here are some examples:
|
|
|
|
Useful expressions
It is often helpful to solve a problem in one specific instance before doing it for all cases.
In programming, we always try the simplest thing first. Let’s consider how to convert just one number to a percentage. Look at this variable declaration:
|
|
We want to create an expression for the percentage using the value of decimalNumber
. To convert to a percentage, we will multiply the number by 100 and then add a "%"
sign on the end.
|
|
Recalling template literals, the expression in the curly braces will be evaluated first and then inserted into the string, giving us the percentage string.
Now that we’ve solved the problem of converting a single decimal number to a percentage, let’s practice solving other similar problems using expressions.
Create a new JavaScript file so that you can try running the code for yourself.
Calculating the area and perimeter of a rectangle
In one of these new files, let’s make two variables that describe the dimensions of a rectangle:
const height = 10; // 10 is just an example of a value here - your code should still work if you change this to another value.
const width = 30; // Also just an example - your code should still work if this changes.
Using these variables, let’s calculate the area and perimeter of the rectangle.
We can calculate the area and perimeter by creating expressions that use the height
and width
variables we just created. Hint: read the links above if you don’t remember how to calculate area and perimeter of a rectangle.
Finally, we’ll create two more variables: area
and perimeter
to store the result of the calculations.
const area = FILL_ME_IN;
const perimeter = FILL_ME_IN;
Now, if we change the numbers assigned to height
and width
, are the area
and perimeter
values still correct? Try using console.log
to print out the value of the variables and then run the script using Node to view the output.
Remember to create a new JavaScript file to run the code for yourself.
Converting pence to pounds
Like the rectangle example, we’ll start by creating a variable to store a price in pence:
const price = 130; // Just an example value. Try changing this value to 0, 10, or 1521, and make sure you still get the right answer from your code.
Now, you should write an expression that calculates the price in pounds. The price in pounds should be shown with 2 decimal places and start with “£”.
Try using console.log
to print out the value of price in pounds and then run the script using Node to view the output.
🪄 Declaring functions
Learning Objectives
Recall
To create a function, we can use a function declaration. A function declaration looks like this:
|
|
The function
declaration consists of the following syntactic elements:
function
keyword, begins the function declarationconvertToPercentage
- names the function()
- any input to the function will go between these round braces (our function above doesn’t take any input (yet), but it still needs the()
s){}
- the body of the function is written inside the curly braces (our function above doesn’t do anything yet, but it still needs the{}
s)
We can create a function declaration by wrapping up the percentage
variable and the expression for the percentage inside the function.
|
|
At the moment decimalNumber
is not wrapped up inside the body of the function. In the following sections, we will explore what happens when this is the case.
🎮 Playing computer
Learning Objectives
To understand how convertToPercentage
works we must build a mental model of how the computer executes our code. To build this model, we use a method called
We will use an interactive code visualiser to play computer.
👣 Step through
In a JavaScript program, each line is an instruction that will have some effect. For example, a line of code with a variable declaration means “store a new variable with this value in memory”. In the interactive widget, arrows are used to show which line just executed and which line is next to be executed.
Click next to see what happens when the computer executes the following program. Pay particular attention to what happens when the function convertToPercentage
is called.
🖼️ Global frame
As we step through the program, we keep track of two things: memory and the line that is being currently executed. We keep track of this information using a
The global frame is always the first frame that gets created when our program starts executing. It is like the starting point for our program, the place where code gets executed first. When we run the code above, decimalNumber
and convertToPercentage
are both stored in the global frame.
🖼️ Local frame
recall
Whenever we call a function a new frame is created for executing the code inside that function. In the example above, we call the function convertToPercentage
on line 7 and then a new frame is created for convertToPercentage
. Inside the convertToPercentage
frame, the computer executes the instructions inside convertToPercentage
, storing new variables in memory and keeping track of the current line that is being executed.
🔭 Scope
Learning Objectives
The function convertToPercentage
will only be useful if we can access the percentage
string that it creates. Otherwise, we won’t be able to use the result of convertToPercentage
in other parts of our code. We can try accessing the percentage
variable outside the function body like this:
|
|
However if we run the code above, we get an error:
ReferenceError: percentage is not defined
We get an error because of
convertToPercentage
we also define a local scope - the region of code enclosed inside convertToPercentage
’s function body. This region is convertToPercentage
’s local scope. This means any variables we declare inside convertToPercentage
’s local scope can only be accessed within this region. If we attempt to reference a variable outside the scope where it was declared, then get a ReferenceError
.
📤 Returning from a function
Learning Objectives
We need a way to access the percentage string that is created inside convertToPercentage
. To access values created inside functions, we write
We can add a return statement to convertToPercentage
like this:
|
|
If we want, we could also remove the variable percentage
, since we can return the value of the expression directly:
|
|
🔎 Checking the output
We can store a function’s return value in a variable.
const result = Math.round(10.3);
console.log(result); // logs 10 to the console
We call Math.round
which takes the input 10.3
and then returns the rounded number 10
. So result
stores a value of 10
.
Math.round
is a function implemented by other developers and convertToPercentage
is a function we’re implementing, but calling convertToPercentage
is just like calling Math.round
.
Now we want to call the function convertToPercentage
and store the return value in a variable.
We can store the return value in a variable in exactly the same way:
|
|
Log out the value of result
to the console using console.log
.
|
|
This will now print the following when run:
50%
♻️ Reusing the function
Learning Objectives
Our goal is for convertToPercentage
to be reusable for any number. To check this goal, let’s call convertToPercentage
with different arguments and check the return value each time:
|
|
When we execute this code we want to log the target output for each input: 0.5
and 0.231
:
50%
23.1%
However, given the function’s current implementation, we get the following logs:
50%
50%
🌍 Global scope
At the moment, decimalNumber
is in the
Play computer and step through the code to check why we get the output below:
50%
50%
🏷️ Parameterising a function
Learning Objectives
At the moment, decimalNumber
is a variable in the global scope of our program:
const decimalNumber = 0.5; // defined in the global scope of our program
function convertToPercentage() {
const percentage = `${decimalNumber * 100}%`;
return percentage;
}
const output1 = convertToPercentage(0.5);
const output2 = convertToPercentage(0.231);
So long as decimalNumber
is always in the global scope, convertToPercentage
will always go to the global scope to get the value of decimalNumber
.
However, we want
convertToPercentage
to work for any input we pass to it.
To make a function work for any number, we need to handle inputs. We do this using a
decimalNumber
is still a variable - but as a parameter we don’t assign decimalNumber
a value inside the function’s body. It is a placeholder. When we call the function, we pass an input to the function, and the value of that input is assigned to the decimalNumber
parameter when the function is called. This happens automatically.
We can add a parameter decimalNumber
to our function:
|
|
In the example above, we’re calling convertToPercentage
twice: first with an input of 0.5
and second with an input of 0.231
. In JavaScript instead of input we use the word
()
. An argument means an input.
We’re calling convertToPercentage
twice: first with an argument of 0.5
and next with an argument of 0.231
.
Think of a function as a box. We put data in and then act on it using the rules in the box; at the end, the box gives us new data back. In programming we say that we pass arguments into a function, the function’s code is executed and we get a return value after the function has finished executing. Here’s a diagram:
flowchart LR A[argument] --> B{function} B --> C[return]
Here’s a diagram of what happens when convertToPercentage
is passed a specific argument:
flowchart LR A[0.231] --> B{convertToPercentage} B --> C[23.1%]
In this interactive widget we have defined a parameter decimalNumber
in the function declaration inside parentheses after the function name convertToPercentage
. In our mental model, a function call means going to convertToPercentage
and running the code inside the function.
Use the interactive widget to see what happens when the code above is executed. Pay close attention to what happens inside the convertToPercentage
frame.
Prep Roles in Tech 🔗
Learning Objectives
Preparation
Introduction
Mapping roles in tech
🎯 Goal: Identify roles in tech (10 minutes)
Search online or look for job vacancies and identify as many roles in tech you can. Our Graduate Module page might have some important information for you too.
Make a list of all roles you found, with the role’s name and:
- one phrase describing what this job does
- one phrase explaining why this job is essential
Tip: make sure you have easy access to this for the class.
Identify professionals skills per roles
🎯 Goal: Differentiate the skills needed per role (40 minutes)
- Chose 5 roles from your previous list that you would like to understand more about.
- Research about what technical and professional skills are required for each role.
- Write down the 3 most important technical and 3 professional skills for this role. Tip: Think about what makes this role different from another?
- Add a phrase to every professional skill explaining why that skills is important for this specific role. Consider that you might have the same skill for two roles, but the explanation of this skills need should not be the same.